我们介绍了仇恨言论推文的Hateval语料库(Basile等,2019年)的丰富,旨在促进自动化的反叙事一代。与以前的工作相比(Chung etal。2019),手动书面反叙事与推文有关。但是,仅此信息似乎不足以获得反叙事生成的令人满意的语言模型。这就是为什么我们还根据Wagemanns(2016)提供了带有争论性信息的注释推文,我们认为可以帮助建立令人信服和有效的反叙事,以针对特定群体进行仇恨言论。我们讨论了这种注释过程的充分和困难,并提出了几个基线以自动检测带注释的元素。初步结果表明,自动注释者会靠近人类注释者来检测论证的某些方面,而其他人仅达到低或中等水平的通知者一致性。
translated by 谷歌翻译
语言的自动处理在我们的生活中普遍存在,经常在我们的决策中扮演核心角色,例如为我们的消息和邮件选择措辞,翻译我们的读物,甚至与我们进行完整的对话。单词嵌入是现代自然语言处理系统的关键组成部分。它们提供了一种词的表示,从而提高了许多应用程序的性能,从而是含义的表现。单词嵌入似乎可以捕捉到原始文本中单词的含义的外观,但与此同时,它们还提炼了刻板印象和社会偏见,后来传达给最终应用。这样的偏见可能是歧视性的。检测和减轻这些偏见,以防止自动化过程的歧视行为非常重要,因为它们的规模可能比人类更有害。目前,有许多工具和技术可以检测和减轻单词嵌入中的偏见,但是它们为没有技术技能的人的参与带来了许多障碍。碰巧的是,大多数偏见专家,无论是社会科学家还是对偏见有害,没有这样的技能的环境,并且由于技术障碍而无法参与偏见检测过程。我们研究了现有工具中的障碍,并与不同种类的用户探索了它们的可能性和局限性。通过此探索,我们建议开发一种专门旨在降低技术障碍的工具,并提供探索能力,以满足愿意审核这些技术的专家,科学家和一般人的要求。
translated by 谷歌翻译
由于BERT出现,变压器语言模型和转移学习已成为自然语言理解任务的最先进。最近,一些作品适用于特定领域的预训练,专制模型,例如科学论文,医疗文件等。在这项工作中,我们呈现RoberTuito,用于西班牙语中的用户生成内容的预先训练的语言模型。我们在西班牙语中培训了罗伯特托5亿推文。关于涉及用户生成文本的4个任务的基准测试显示,罗伯特托多于西班牙语的其他预先接受的语言模型。为了帮助进一步研究,我们将罗伯特多公开可在HuggingFace Model Hub上提供。
translated by 谷歌翻译
Models of sensory processing and learning in the cortex need to efficiently assign credit to synapses in all areas. In deep learning, a known solution is error backpropagation, which however requires biologically implausible weight transport from feed-forward to feedback paths. We introduce Phaseless Alignment Learning (PAL), a bio-plausible method to learn efficient feedback weights in layered cortical hierarchies. This is achieved by exploiting the noise naturally found in biophysical systems as an additional carrier of information. In our dynamical system, all weights are learned simultaneously with always-on plasticity and using only information locally available to the synapses. Our method is completely phase-free (no forward and backward passes or phased learning) and allows for efficient error propagation across multi-layer cortical hierarchies, while maintaining biologically plausible signal transport and learning. Our method is applicable to a wide class of models and improves on previously known biologically plausible ways of credit assignment: compared to random synaptic feedback, it can solve complex tasks with less neurons and learn more useful latent representations. We demonstrate this on various classification tasks using a cortical microcircuit model with prospective coding.
translated by 谷歌翻译
Language models (LMs) have demonstrated remarkable performance on downstream tasks, using in-context exemplars or human instructions. Recent works have shown that chain-of-thought (CoT) prompting can elicit models to solve complex reasoning tasks, step-by-step. However, the efficacy of prompt-based CoT methods is restricted to very large LMs such as GPT-3 (175B), thus limiting deployability. In this paper, we revisit the fine-tuning approach to enable complex reasoning in smaller LMs, optimized to efficiently perform a specific task. We propose Fine-tune-CoT, a method that leverages the capabilities of very large LMs to generate reasoning samples and teach smaller models via fine-tuning. We evaluate our method on publicly available LMs across a wide range of complex tasks and model sizes. We find that Fine-tune-CoT enables substantial reasoning capability in small models, whereas previous prompt-based baselines exhibit near-random performance. Student models can even outperform the teacher in some tasks while reducing model size requirements by several orders of magnitude. We conduct extensive ablations and sample studies to understand the reasoning capabilities of student models. We also identify several important nuances that have been overlooked in concurrent fine-tuning works on CoT and address them in our analysis.
translated by 谷歌翻译
After just a few hundred training updates, a standard probabilistic model for language generation has likely not yet learnt many semantic or syntactic rules of natural language, which inherently makes it difficult to estimate the right probability distribution over next tokens. Yet around this point, these models have identified a simple, loss-minimising behaviour: to output the unigram distribution of the target training corpus. The use of such a crude heuristic raises the question: Rather than wasting precious compute resources and model capacity for learning this strategy at early training stages, can we initialise our models with this behaviour? Here, we show that we can effectively endow our model with a separate module that reflects unigram frequency statistics as prior knowledge. Standard neural language generation architectures offer a natural opportunity for implementing this idea: by initialising the bias term in a model's final linear layer with the log-unigram distribution. Experiments in neural machine translation demonstrate that this simple technique: (i) improves learning efficiency; (ii) achieves better overall performance; and (iii) appears to disentangle strong frequency effects, encouraging the model to specialise in non-frequency-related aspects of language.
translated by 谷歌翻译
Heteroscedastic regression models a Gaussian variable's mean and variance as a function of covariates. Parametric methods that employ neural networks for these parameter maps can capture complex relationships in the data. Yet, optimizing network parameters via log likelihood gradients can yield suboptimal mean and uncalibrated variance estimates. Current solutions side-step this optimization problem with surrogate objectives or Bayesian treatments. Instead, we make two simple modifications to optimization. Notably, their combination produces a heteroscedastic model with mean estimates that are provably as accurate as those from its homoscedastic counterpart (i.e.~fitting the mean under squared error loss). For a wide variety of network and task complexities, we find that mean estimates from existing heteroscedastic solutions can be significantly less accurate than those from an equivalently expressive mean-only model. Our approach provably retains the accuracy of an equally flexible mean-only model while also offering best-in-class variance calibration. Lastly, we show how to leverage our method to recover the underlying heteroscedastic noise variance.
translated by 谷歌翻译
Active target sensing is the task of discovering and classifying an unknown number of targets in an environment and is critical in search-and-rescue missions. This paper develops a deep reinforcement learning approach to plan informative trajectories that increase the likelihood for an uncrewed aerial vehicle (UAV) to discover missing targets. Our approach efficiently (1) explores the environment to discover new targets, (2) exploits its current belief of the target states and incorporates inaccurate sensor models for high-fidelity classification, and (3) generates dynamically feasible trajectories for an agile UAV by employing a motion primitive library. Extensive simulations on randomly generated environments show that our approach is more efficient in discovering and classifying targets than several other baselines. A unique characteristic of our approach, in contrast to heuristic informative path planning approaches, is that it is robust to varying amounts of deviations of the prior belief from the true target distribution, thereby alleviating the challenge of designing heuristics specific to the application conditions.
translated by 谷歌翻译
When annotators label data, a key metric for quality assurance is inter-annotator agreement (IAA): the extent to which annotators agree on their labels. Though many IAA measures exist for simple categorical and ordinal labeling tasks, relatively little work has considered more complex labeling tasks, such as structured, multi-object, and free-text annotations. Krippendorff's alpha, best known for use with simpler labeling tasks, does have a distance-based formulation with broader applicability, but little work has studied its efficacy and consistency across complex annotation tasks. We investigate the design and evaluation of IAA measures for complex annotation tasks, with evaluation spanning seven diverse tasks: image bounding boxes, image keypoints, text sequence tagging, ranked lists, free text translations, numeric vectors, and syntax trees. We identify the difficulty of interpretability and the complexity of choosing a distance function as key obstacles in applying Krippendorff's alpha generally across these tasks. We propose two novel, more interpretable measures, showing they yield more consistent IAA measures across tasks and annotation distance functions.
translated by 谷歌翻译
Nucleolar organizer regions (NORs) are parts of the DNA that are involved in RNA transcription. Due to the silver affinity of associated proteins, argyrophilic NORs (AgNORs) can be visualized using silver-based staining. The average number of AgNORs per nucleus has been shown to be a prognostic factor for predicting the outcome of many tumors. Since manual detection of AgNORs is laborious, automation is of high interest. We present a deep learning-based pipeline for automatically determining the AgNOR-score from histopathological sections. An additional annotation experiment was conducted with six pathologists to provide an independent performance evaluation of our approach. Across all raters and images, we found a mean squared error of 0.054 between the AgNOR- scores of the experts and those of the model, indicating that our approach offers performance comparable to humans.
translated by 谷歌翻译